[Calculus] IV. Differentiation
Differentiation Formulas
Theorem 4.1.1.
(1)ddx(c)=0(2)ddx(xn)=nxn−1(n∈R)(3)ddx[cf(x)]=cddxf(x)
(4)If f and g are both differentiable, then
ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)
ddx[f(x)−g(x)]=ddxf(x)−ddxg(x)
(5)If f and g are both differentiable, then
ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)
ddx[f(x)g(x)]=g(x)ddxf(x)−f(x)ddxg(x)[g(x)]2
Proof. (3) Let g(x)=cf(x). Then
ddxg(x)=lim
\Box
(4)(1) Let F(x) = f(x) + g(x) . Then
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}F(x) &= \lim_{h \to 0}\frac{F(x + h) - F(x)}{h} \\[7pt] &= \lim_{h \to 0}\frac{\left[ f(x + h) + g(x + h) \right] - \left[ f(x) + g(x) \right]}{h} \\[7pt] &= \lim_{h \to 0}\left[ \frac{f(x + h) - f(x)}{h} + \frac{g(x + h) - g(x)}{h} \right] \\[7pt] &= {\operatorname{d}\over\operatorname{d}\!x}f(x) + {\operatorname{d}\over\operatorname{d}\!x}g(x) \end{align}
\Box
(5)(1) Let F(x) = f(x)g(x) . Then
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}F(x) &= \lim_{h \to 0}\frac{F(x + h) - F(x)}{h} \\[7pt] &= \lim_{h \to 0}\frac{f(x + h) g(x + h) - f(x) g(x)}{h} \end{align}
In order to evaluate this limit, we would like to separate the functions f and g as in the proof of (4)(1). We can achieve this separation by subtracting and adding the term f(x + h)g(x) in the numerator:
\begin{align} \displaystyle &{\operatorname{d}\over\operatorname{d}\!x}F(x) \\[14pt] \displaystyle &= \lim_{h \to 0}\frac{f(x + h) g(x + h) - f(x + h)g(x) + f(x + h)g(x) - f(x) g(x)}{h} \\[14pt] \displaystyle &= \lim_{h \to 0}\!\left[ f(x + h)\frac{g(x + h) - g(x)}{h} + g(x)\frac{f(x + h) - f(x)}{h} \right] \\[14pt] \displaystyle &= \lim_{h \to 0}f(x + h) \cdot \lim_{h \to 0}\frac{g(x + h) - g(x)}{h} + \lim_{h \to 0}g(x) \cdot \lim_{h \to 0}\frac{f(x + h) - f(x)}{h} \\[14pt] \displaystyle &= f(x){\operatorname{d}\over\operatorname{d}\!x}g(x) + g(x){\operatorname{d}\over\operatorname{d}\!x}f(x) \end{align}
\Box
(5)(2) Let \displaystyle F(x) = \frac{f(x)}{g(x)} . Then
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}F(x) &= \lim_{h \to 0}\frac{F(x + h) - F(x)}{h} \\[7pt] &= \lim_{h \to 0}\frac{ \displaystyle \frac{f(x + h)}{g(x + h)} - \frac{f(x)}{g(x)}}{h} \\[7pt] &= \lim_{h \to 0}\frac{f(x + h)g(x) - f(x)g(x + h)}{hg(x + h)g(x)} \end{align}
We can separate f and g in this expression by subtracting and adding the term f(x)g(x) in the numerator:
\begin{align} \displaystyle &{\operatorname{d}\over\operatorname{d}\!x}F(x) \\[14pt] \displaystyle &= \lim_{h \to 0}\frac{f(x + h)g(x) - f(x)g(x) + f(x)g(x) - f(x)g(x + h)}{hg(x + h)g(x)} \\[14pt] \displaystyle &= \lim_{h \to 0}\frac{\displaystyle g(x)\frac{f(x + h) - f(x)}{h} - f(x)\frac{g(x + h) - g(x)}{h}}{g(x + h)g(x)} \\[14pt] \displaystyle &= \frac{\displaystyle \lim_{h \to 0}g(x) \cdot \lim_{h \to 0}\frac{f(x + h) - f(x)}{h} - \displaystyle \lim_{h \to 0}f(x) \cdot \lim_{h \to 0}\frac{g(x + h) - g(x)}{h}}{\displaystyle \lim_{h \to 0}g(x + h) \cdot \lim_{h \to 0}g(x)} \\[14pt] \displaystyle &= \frac{\displaystyle g(x){\operatorname{d}\over\operatorname{d}\!x}f(x) - f(x){\operatorname{d}\over\operatorname{d}\!x}g(x)}{\left[ g(x) \right]^{2}} \end{align}
\Box
Example 4.1.2. Find F'(x) if F(x) = \left(6x^{3}\right)\!\left(7x^{4}\right) .
Solution. By Theorem 4.1.1 - (5)(1), we have
\displaystyle \begin{align} F'(x) &= \left(6x^{3}\right)\!{\operatorname{d}\over\operatorname{d}\!x}\!\left(7x^{4}\right) + \left(7x^{4}\right)\!{\operatorname{d}\over\operatorname{d}\!x}\!\left(6x^{3}\right) \\[7pt] &= \left(6x^{3}\right)\!\left(28x^{3}\right) + \left(7x^{4}\right)\!\left(18x^{2}\right) \\[7pt] &= 168x^{6} + 126x^{6} = 294x^{6} \end{align}
\Box
Lemma 4.1.3.
\displaystyle \lim_{\theta \to 0}\frac{\sin \theta}{\theta} = 1
Proof. We now use a geometric argument to prove the limit above. Assume first that \theta lies between 0 and \pi/2 .
Figure 1
Figure 2
Figure 1 shows a sector of a circle with center O , central angle \theta , and radius 1 . BC is drawn perpendicular to OA . By the definition of radian measure, we have arc AB = \theta . Also \left\vert BC \right\vert = \left\vert OB \right\vert \sin \theta = \sin \theta . From the diagram we see that
\displaystyle \left\vert BC \right\vert < \left\vert AB \right\vert < \text{arc} \ AB
Therefore
\displaystyle \sin \theta < \theta \qquad \text{so} \qquad \frac{\sin \theta}{\theta} < 1
Let the tangent lines at A and B intersect at E . You can see from Figure 2 that the circumference of a circle is smaller than the length of a circumscribed polygon, and so arc AB < \left\vert AE \right\vert + \left\vert EB \right\vert . Thus
\displaystyle \begin{align} \theta = \text{arc} \ AB &< \left\vert AE \right\vert + \left\vert EB \right\vert \\[7pt] &< \left\vert AE \right\vert + \left\vert ED \right\vert \\[7pt] &= \left\vert AD \right\vert = \left\vert OA \right\vert \tan \theta \\[7pt] &= \tan \theta \end{align}
Therefore we have
\displaystyle \theta < \frac{\sin \theta}{\cos \theta}
so
\displaystyle \cos \theta < \frac{\sin \theta}{\theta} < 1
We know \displaystyle \lim_{\theta \to 0}1 = 1 and \displaystyle \lim_{\theta \to 0}\cos \theta = 1 , so by Theorem 1.2.3, we have
\displaystyle \lim_{\theta \to 0^{+}}\! \! \frac{\sin \theta}{\theta} = 1
But the function (\sin \theta)/\theta is an even function, so its right and left limits must be equal. Hence, we have
\displaystyle \lim_{\theta \to 0}\frac{\sin \theta}{\theta} = 1
\Box
Theorem 4.1.4.
\displaystyle (1) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\sin x) = \cos x \\[14pt] \displaystyle (2) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\cos x) = -\sin x \\[14pt] \displaystyle (3) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\tan x) = \sec^2 \! x \\[14pt] \displaystyle (4) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\csc x) = -\csc x \cot x \\[14pt] \displaystyle (5) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\sec x) = \sec x \tan x \\[14pt] \displaystyle (6) \hspace{2.5em} {\operatorname{d}\over\operatorname{d}\!x}(\cot x) = -\cot^2 \! x \\[14pt]
Proof. (1) Let f(x) = \sin x . Then
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}f(x) &= \lim_{h \to 0}\frac{f(x + h) - f(x)}{h} \\[7pt] &= \lim_{h \to 0}\frac{\sin (x + h) - \sin x}{h} \\[7pt] &= \lim_{h \to 0}\frac{\sin x \cos h + \cos x \sin h - \sin x}{h} \\[7pt] &= \lim_{h \to 0}\left[ \frac{\sin x(\cos h - 1)}{h} + \frac{\cos x \sin h}{h} \right] \\[7pt] &= \lim_{h \to 0}\left[ \sin x \left(\frac{\cos h - 1}{h} \right) + \cos x \left(\frac{\sin h}{h} \right) \right] \\[7pt] &= \lim_{h \to 0}\sin x \cdot \lim_{h \to 0}\frac{\cos h - 1}{h} + \lim_{h \to 0}\cos x \cdot \lim_{h \to 0}\frac{\sin h}{h} \end{align}
By Lemma 4.1.3, \displaystyle \lim_{h \to 0}(\sin h)/h = 1 . We can deduce the value of \displaystyle \lim_{h \to 0} (\cos h - 1)/h as follows:
\displaystyle \begin{align} \lim_{h \to 0}\frac{\cos h - 1}{h} &= \lim_{h \to 0}\left( \frac{\cos h - 1}{h} \cdot \frac{\cos h + 1}{\cos h + 1} \right) = \lim_{h \to 0}\frac{\cos^2 \! h - 1}{h(\cos h + 1)} \\[7pt] &= \lim_{h \to 0}\frac{-\sin^2 \! h}{h(\cos h + 1)} = -\lim_{h \to 0}\left( \frac{\sin h}{h} \cdot \frac{\sin h}{\cos h + 1} \right) \\[7pt] &= -\lim_{h \to 0}\frac{\sin h}{h} \cdot \lim_{h \to 0}\frac{\sin h}{\cos h + 1} \\[7pt] &= -1 \cdot \left( \frac{0}{1 + 1} \right) = 0 \end{align}
Therefore,
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}f(x) &= \lim_{h \to 0}\sin x \cdot \lim_{h \to 0}\frac{\cos h - 1}{h} + \lim_{h \to 0}\cos x \cdot \lim_{h \to 0}\frac{\sin h}{h} \\[7pt] &= (\sin x) \cdot 0 + (\cos x) \cdot 1 = \cos x \end{align}
\Box
(3)
\displaystyle \begin{align} {\operatorname{d}\over\operatorname{d}\!x}(\tan x) &= {\operatorname{d}\over\operatorname{d}\!x}\!\left( \frac{\sin x}{\cos x} \right) \\[7pt] &= \frac{\displaystyle \cos x {\operatorname{d}\over\operatorname{d}\!x}(\sin x) - \sin x {\operatorname{d}\over\operatorname{d}\!x}(\cos x)}{\cos^2 \! x} \\[7pt] &= \frac{\cos x \cdot \cos x - \sin x (-\sin x)}{\cos^2 \! x} \\[7pt] &= \frac{\cos^2 \! x + \sin^2 \! x}{\cos^2 \! x} \\[7pt] &= \frac{1}{\cos^2 \! x} = \sec^2 \! x \end{align}
\Box
The Chain Rule
Theorem 4.2.1. (The Chain Rule) If g is differentiable at x and f is differentiable at g(x) , then the composite function F = f \circ g defined by F(x) = f(g(x)) is differentiable at x and F' is given by the product
\displaystyle F'(x) = f'(g(x)) \cdot g'(x)
In Leibniz notation, if y = f(u) and u = g(x) are both differentiable functions, then
\displaystyle {\operatorname{d}\!y\over\operatorname{d}\!x} = {\operatorname{d}\!y\over\operatorname{d}\!u} {\operatorname{d}\!u\over\operatorname{d}\!x}
Proof. Recall that if y = f(x) and x changes from a to a + \Delta x , we define the increment of y as
\displaystyle \Delta y = f(a + \Delta x) - f(a)
According to the definition of a derivative, we have
\displaystyle \lim_{\Delta x \to 0}\! \frac{\Delta y}{\Delta x} = f'(a)
So if we denote by \varepsilon the difference between the difference quotient and the derivative, we obtain
\displaystyle \lim_{\Delta x \to 0}\! \varepsilon = \lim_{\Delta x \to 0}\!\! \left( \frac{\Delta y}{\Delta x} - f'(a) \right) = f'(a) - f'(a) = 0
But
\displaystyle \varepsilon = \frac{\Delta y}{\Delta x} - f'(a) \qquad \Rightarrow \qquad \Delta y = f'(a)\Delta x + \varepsilon \Delta x
If we define \varepsilon to be 0 when \Delta x = 0 , then \varepsilon becomes a continuous function of \Delta x . Thus, for a differentiable function f , we can write
\displaystyle \Delta y = f'(a)\Delta x + \varepsilon \Delta x \qquad \text{where} \qquad \varepsilon \to 0 \quad \text{as} \quad \Delta x \to 0 \qquad \cdots \qquad \text{(i)}
and \varepsilon is a continuous function of \Delta x . This property of differentiable functions is what enables us to prove the Chain Rule.
Suppose u = g(x) is differentiable at a and y = f(u) is differentiable at b = g(a) . If \Delta x is an increment in x and \Delta u and \Delta y are the corresponding increments in u and y , then we can use Equation (\text{i}) to write
\displaystyle \Delta u = g'(a)\Delta x + \varepsilon_{1}\Delta x = \left[ g'(a) + \varepsilon_{1} \right]\Delta x \qquad \cdots \qquad \text{(ii)}
where \varepsilon_{1} \to 0 as \Delta x \to 0 . Similarly
\displaystyle \Delta y = f'(b)\Delta u + \varepsilon_{2}\Delta u = \left[ f'(b) + \varepsilon_{2} \right]\Delta u \qquad \cdots \qquad \text{(iii)}
where \varepsilon_{2} \to 0 as \Delta u \to 0 . If we now substitute the expression for \Delta u from Equation (\text{ii}) into Equation (\text{iii}) , we get
\displaystyle \Delta y = \left[ f'(b) + \varepsilon_{2} \right] \left[ g'(a) + \varepsilon_{1} \right]\Delta x
so
\displaystyle \frac{\Delta y}{\Delta x} = \left[ f'(b) + \varepsilon_{2} \right] \left[ g'(a) + \varepsilon_{1} \right]
As \Delta x \to 0 , Equation (\text{ii}) shows that \Delta u \to 0 . So both \varepsilon_{1} \to 0 and \varepsilon_{2} \to 0 as \Delta x \to 0 . Therefore
\displaystyle \begin{align} {\operatorname{d}\!y\over\operatorname{d}\!x} &= \lim_{\Delta x \to 0}\!\! \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0}\! \left[ f'(b) + \varepsilon_{2} \right] \left[ g'(a) + \varepsilon_{1} \right] \\[7pt] &= f'(b)g'(a) = f'(g(a))g'(a) \end{align}
This proves the Chain Rule.
\Box
Example 4.2.2. Differentiate y = \sin \left(x^{2}\right) .
Solution. Let u = x^{2} . Then by Theorem 4.2.1,
\displaystyle \begin{align} {\operatorname{d}\!y\over\operatorname{d}\!x} &= {\operatorname{d}\!y\over\operatorname{d}\!u}{\operatorname{d}\!u\over\operatorname{d}\!x} = {\operatorname{d}\over\operatorname{d}\!u}\!\sin u \cdot {\operatorname{d}\over\operatorname{d}\!x}x^{2} \\[7pt] &= \cos u \cdot 2x = 2x\cos \left(x^{2}\right) \end{align}
\Box
The body text and the figures were excerpted from James Stewart, Calculus 8E.
'Calculus' 카테고리의 다른 글
[Calculus] VI. Applications of Differentiation (0) | 2019.01.29 |
---|---|
[Calculus] V. Linear Approximations and Differentials (0) | 2019.01.27 |
[Calculus] III. Derivatives (0) | 2019.01.16 |
[Calculus] II. Continuity (0) | 2019.01.15 |
[Calculus] I. Limits (0) | 2018.10.11 |